Skip to content

第二十二讲:对角化和\(A\)的幂

对角化矩阵

上一讲我们提到关键方程\(Ax=\lambda x\),通过\(\det(A-\lambda I)=0\)得到特征向量\(\lambda\),再带回关键方程算出特征向量\(x\)

在得到特征值与特征向量后,该如何使用它们?我们可以利用特征向量来对角化给定矩阵。

有矩阵\(A\),它的特征向量为\(x_1, x_2, \cdots, x_n\),使用特征向量作为列向量组成一个矩阵\(S=\Bigg[x_1x_2\cdots x_n\Bigg]\),即特征向量矩阵, 再使用公式\(\(S^{-1}AS=\Lambda\tag{1}\)\)\(A\)对角化。注意到公式中有\(S^{-1}\),也就是说特征向量矩阵\(S\)必须是可逆的,于是我们需要\(n\)个线性无关的特征向量。

现在,假设\(A\)\(n\)个线性无关的特征向量,将它们按列组成特征向量矩阵\(S\),则\(AS=A\Bigg[x_1x_2\cdots x_n\Bigg]\),当我们分开做矩阵与每一列相乘的运算时,易看出\(Ax_1\)就是矩阵与自己的特征向量相乘,其结果应该等于\(\lambda_1x_1\)。那么\(AS=\Bigg[(\lambda_1x_1)(\lambda_2x_2)\cdots(\lambda_nx_n)\Bigg]\)。可以进一步化简原式,使用右乘向量按列操作矩阵的方法,将特征值从矩阵中提出来,得到\(\Bigg[x_1x_2\cdots x_n\Bigg]\begin{bmatrix}\lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\lambda_n\end{bmatrix}=S\Lambda\)

于是我们看到,从\(AS\)出发,得到了\(S\Lambda\),特征向量矩阵又一次出现了,后面接着的是一个对角矩阵,即特征值矩阵。这样,再继续左乘\(S^{-1}\)就得到了公式\((1)\)。当然,所以运算的前提条件是特征向量矩阵\(S\)可逆,即矩阵\(A\)\(n\)个线性无关的特征向量。这个式子还要另一种写法,\(A=S\Lambda S^{-1}\)

我们来看如何应用这个公式,比如说要计算\(A^2\)

  • 先从\(Ax=\lambda x\)开始,如果两边同乘以\(A\),有\(A^2x=\lambda Ax=\lambda^2x\),于是得出结论,对于矩阵\(A^2\),其特征值也会取平方,而特征向量不变。
  • 再从\(A=S\Lambda S^{-1}\)开始推导,则有\(A^2=S\Lambda S^{-1}S\Lambda S^{-1}=S\Lambda^2S^{-1}\)。同样得到特征值取平方,特征向量不变。

两种方法描述的是同一个现象,即对于矩阵幂运算\(A^2\),其特征向量不变,而特征值做同样的幂运算。对角矩阵\(\Lambda^2=\begin{bmatrix}\lambda_1^2&0&\cdots&0\\0&\lambda_2^2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\lambda_n^2\end{bmatrix}\)

特征值和特征向量给我们了一个深入理解矩阵幂运算的方法,\(A^k=S\Lambda^kS^{-1}\)

再来看一个矩阵幂运算的应用:如果\(k\to\infty\),则\(A^k\to 0\)(趋于稳定)的条件是什么?从\(S\Lambda^kS^{-1}\)易得,\(|\lambda_i|<1\)。再次强调,所有运算的前提是矩阵\(A\)存在\(n\)个线性无关的特征向量。如果没有\(n\)个线性无关的特征向量,则矩阵就不能对角化。

关于矩阵可对角化的条件:

  • 如果一个矩阵有\(n\)个互不相同的特征值(即没有重复的特征值),则该矩阵具有\(n\)个线性无关的特征向量,因此该矩阵可对角化。
  • 如果一个矩阵的特征值存在重复值,则该矩阵可能具有\(n\)个线性无关的特征向量。比如取\(10\)阶单位矩阵,\(I_{10}\)具有\(10\)个相同的特征值\(1\),但是单位矩阵的特征向量并不短缺,每个向量都可以作为单位矩阵的特征向量,我们很容易得到\(10\)个线性无关的特征向量。当然这里例子中的\(I_{10}\)的本来就是对角矩阵,它的特征值直接写在矩阵中,即对角线元素。

    同样的,如果是三角矩阵,特征值也写在对角线上,但是这种情况我们可能会遇到麻烦。矩阵\(A=\begin{bmatrix}2&1\\0&2\end{bmatrix}\),计算行列式值\(\det(A-\lambda I)=\begin{vmatrix}2-\lambda&1\\0&2-\lambda\end{vmatrix}=(2-\lambda)^2=0\),所以特征值为\(\lambda_1=\lambda_2=2\),带回\(Ax=\lambda x\)得到计算\(\begin{bmatrix}0&1\\0&0\end{bmatrix}\)的零空间,我们发现\(x_1=x_2=\begin{bmatrix}1\\0\end{bmatrix}\),代数重度(algebraic multiplicity,计算特征值重复次数时,就用代数重度,就是它作为多项式根的次数,这里的多项式就是\((2-\lambda)^2\))为\(2\),这个矩阵无法对角化。这就是上一讲的退化矩阵。

我们不打算深入研究有重复特征值的情形。

\(u_{k+1}=Au_k\)

\(u_1=Au_0\)开始,\(u_2=A^2u_0\),所有\(u_k=A^ku_0\)。下一讲涉及微分方程(differential equation),会有求导的内容,本讲先引入简单的差分方程(difference equation)。本例是一个一阶差分方程组(first order system)。

要解此方程,需要将\(u_0\)展开为矩阵\(A\)特征向量的线性组合,即\(u_0=c_1x_1+c_2x_2+\cdots+c_nx_n=\Bigg[x_1x_2\cdots x_n\Bigg]\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}=Sc\)。于是\(Au_0=c_1Ax_1+c_2Ax_2+\cdots+c_nAx_n=c_1\lambda_1x_1+c_2\lambda_2x_2+\cdots+c_n\lambda_nx_n\)。继续化简原式,\(Au_0=\Bigg[x_1x_2\cdots x_n\Bigg]\begin{bmatrix}\lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&\lambda_n\end{bmatrix}\begin{bmatrix}c_1\\c_2\\\vdots\\c_n\end{bmatrix}=S\Lambda c\)。用矩阵的方式同样可以得到该式:\(Au_0=S\Lambda S^{-1}u_0=S\Lambda S^{-1}Sc=S\Lambda c\)

那么如果我们要求\(A^{100}u_0\),则只需要将\(\lambda\)变为\(\lambda^{100}\),而系数\(c\)与特征向量\(x\)均不变。

当我们真的要计算\(A^{100}u_0\)时,就可以使用\(S\Lambda^{100}c=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2+\cdots+c_n\lambda_n^{100}x_n\)

接下来看一个斐波那契数列(Fibonacci sequence)的例子:

\(0,1,1,2,3,5,8,13,\cdots,F_{100}=?\),我们要求第一百项的公式,并观察这个数列是如何增长的。可以想象这个数列并不是稳定数列,因此无论如何该矩阵的特征值并不都小于一,这样才能保持增长。而他的增长速度,则有特征值来决定。

已知\(F_{k+2}=F_{k_1}+F_{k}\),但这不是\(u_{k+1}=Au_{k}\)的形式,而且我们只要一个方程,而不是方程组,同时这是一个二阶差分方程(就像含有二阶导数的微分方程,希望能够化简为一阶倒数,也就是一阶差分)。

使用一个小技巧,令\(u_{k}=\begin{bmatrix}F_{k+1}\\F_{k}\end{bmatrix}\),再追加一个方程组成方程组:\(\begin{cases}F_{k+2}&=F_{k+1}+F_{k}\\F_{k+1}&=F_{k+1}\end{cases}\),再把方程组用矩阵表达得到\(\begin{bmatrix}F_{k+2}\\F_{k+1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\begin{bmatrix}F_{k+1}\\F_{k}\end{bmatrix}\),于是我们得到了\(u_{k+1}=Au_{k}, A=\begin{bmatrix}1&1\\1&0\end{bmatrix}\)。我们把二阶标量方程(second-order scalar problem)转化为一阶向量方程组(first-order system)。

我们的矩阵\(A=\begin{bmatrix}1&1\\1&0\end{bmatrix}\)是一个对称矩阵,所以它的特征值将会是实数,且他的特征向量将会互相正交。因为是二阶,我们可以直接利用迹与行列式解方程组\(\begin{cases}\lambda_1+\lambda_2&=1\\\lambda_1\cdot\lambda_2&=-1\end{cases}\)。在求解之前,我们先写出一般解法并观察\(\left|A-\lambda I\right|=\begin{vmatrix}1-\lambda&1\\1&-\lambda\end{vmatrix}=\lambda^2-\lambda-1=0\),与前面斐波那契数列的递归式\(F_{k+2}=F_{k+1}+F_{k}\rightarrow F_{k+2}-F_{k+1}-F_{k}=0\)比较,我们发现这两个式子在项数与幂次上非常相近。

  • 用求根公式解特征值得\(\begin{cases}\lambda_1=\frac{1}{2}\left(1+\sqrt{5}\right)\approx{1.618}\\\lambda_2=\frac{1}{2}\left(1-\sqrt{5}\right)\approx{-0.618}\end{cases}\),得到两个不同的特征值,一定会有两个线性无关的特征向量,则该矩阵可以被对角化。

我们先来观察这个数列是如何增长的,数列增长由什么来控制?——特征值。哪一个特征值起决定性作用?——较大的一个。

\(F_{100}=c_1\left(\frac{1+\sqrt{5}}{2}\right)^{100}+c_2\left(\frac{1-\sqrt{5}}{2}\right)^{100}\approx c_1\left(\frac{1+\sqrt{5}}{2}\right)^{100}\),由于\(-0.618\)在幂增长中趋近于\(0\),所以近似的忽略该项,剩下较大的项,我们可以说数量增长的速度大约是\(1.618\)。可以看出,这种问题与求解\(Ax=b\)不同,这是一个动态的问题,\(A\)的幂在不停的增长,而问题的关键就是这些特征值。

  • 继续求解特征向量,\(A-\lambda I=\begin{bmatrix}1-\lambda&1\\1&1-\lambda\end{bmatrix}\),因为有根式且矩阵只有二阶,我们直接观察\(\begin{bmatrix}1-\lambda&1\\1&1-\lambda\end{bmatrix}\begin{bmatrix}?\\?\end{bmatrix}=0\),由于\(\lambda^2-\lambda-1=0\),则其特征向量为\(\begin{bmatrix}\lambda\\1\end{bmatrix}\),即\(x_1=\begin{bmatrix}\lambda_1\\1\end{bmatrix}, x_2=\begin{bmatrix}\lambda_2\\1\end{bmatrix}\)

最后,计算初始项\(u_0=\begin{bmatrix}F_1\\F_0\end{bmatrix}=\begin{bmatrix}1\\0\end{bmatrix}\),现在将初始项用特征向量表示出来\(\begin{bmatrix}1\\0\end{bmatrix}=c_1x_1+c_2x_2\),计算系数得\(c_1=\frac{\sqrt{5}}{5}, c_2=-\frac{\sqrt{5}}{5}\)

来回顾整个问题,对于动态增长的一阶方程组,初始向量是\(u_0\),关键在于确定\(A\)的特征值及特征向量。特征值将决定增长的趋势,发散至无穷还是收敛于某个值。接下来需要找到一个展开式,把\(u_0\)展开成特征向量的线性组合。

  • 再下来就是套用公式,即\(A\)\(k\)次方表达式\(A^k=S\Lambda^kS^{-1}\),则有\(u_{99}=Au_{98}=\cdots=A^{99}u_{0}=S\Lambda^{99}S^{-1}Sc=S\Lambda^{99}c\),代入特征值、特征向量得\(u_{99}=\begin{bmatrix}F_{100}\\F_{99}\end{bmatrix}=\begin{bmatrix}\frac{1+\sqrt{5}}{2}&\frac{1-\sqrt{5}}{2}\\1&1\end{bmatrix}\begin{bmatrix}\left(\frac{1+\sqrt{5}}{2}\right)^{99}&0\\0&\left(\frac{1-\sqrt{5}}{2}\right)^{99}\end{bmatrix}\begin{bmatrix}\frac{\sqrt{5}}{5}\\-\frac{\sqrt{5}}{5}\end{bmatrix}=\begin{bmatrix}c_1\lambda_1^{100}+c_2\lambda_2^{100}\\c_1\lambda_1^{99}+c_2\lambda_2^{99}\end{bmatrix}\),最终结果为\(F_{100}=c_1\lambda_1^{100}+c_2\lambda_2^{100}\)

  • 原式的通解为\(u_k=c_1\lambda^kx_1+c_2\lambda^kx_2\)

下一讲将介绍求解微分方程。



回到顶部